Abstract
When  academic  researchers  develop  and  validate autonomous driving algorithms, there 
is a challenge in balancing high-performance capabilities with the cost and complexity of the 
vehicle platform. Much of today’s research on autonomous vehicles (AV) is limited to 
experimentation on expensive commercial vehicles  that  require  large  teams  with  diverse  
skills  to  retrofit the  vehicles  and  test  them  in  dedicated  testing  facilities.  Testing 
the  limits  of  safety  and  performance  on  such  vehicles  is  costly and  hazardous.  It  is  
also  outside  the  reach  of  most  academic departments  and  research  groups.  On  the  other  
hand,  scaled- down  1/10th-1/16th  scale  vehicle  platforms  are  more  affordable but have 
limited similitude in dynamics, control, and drivability. To  address  this  issue,  we  present  
the  design  of  a  one-third- scale  autonomous  electric  go-kart  platform  with  open-source 
mechatronics   design   along   with   fully-functional   autonomous driving  software.  The  
platform’s  multi-modal  driving  system is  capable  of  manual,  autonomous,  and  teleoperation  
driving modes.  It  also  features  a  flexible  sensing  suite  for  development and  deployment  
of  algorithms  across  perception,  localization, planning,  and  control.  This  development  
serves  as  a  bridge between  full-scale  vehicles  and  reduced-scale  cars  while  accelerating  cost-effective  algorithmic  advancements  in  autonomous systems research.   Our experimental   results   demonstrate   the AV4EV  platform’s  capabilities  and  ease-of-use  for  
developing new AV algorithms. All materials are available at AV4EV.org to stimulate collaborative within AV and electric vehicle (EV) communities.

You may also like

Back to Top